\[\begin{array}{l}
{T_{\overrightarrow u }}\left( a \right) = a \Rightarrow \overrightarrow u //a\\
{T_{\overrightarrow v }}\left( b \right) = b' \Rightarrow \overrightarrow v = \overrightarrow {AB} \,voi\,A \in b,B \in b'\\
Vay\,\left\{ \begin{array}{l}
{T_{\overrightarrow w }}\left( a \right) = a\\
{T_{\overrightarrow w }}\left( b \right) = b'
\end{array} \right. \Leftrightarrow \overrightarrow w = \overrightarrow {AB} \,voi\,A = a \cap b,B = a \cap b'\\
Co\,1\,phep\,tinh\,tien
\end{array}\]