Đáp án:9
Giải thích các bước giải:
có (a-$\frac{7}{9}$)²$\geq$ 0 với mọi a
(b-$\frac{4}{9}$)²$\geq$ 0 với mọi b
(c-$\frac{4}{9}$)²$\geq$ 0 với mọi c
⇔(a-$\frac{7}{9}$)²+(b-$\frac{4}{9}$)²+(c-$\frac{4}{9}$)² $\geq$ 0 với mọi a,b,c
⇔a²-14/9a+49/81+b²-8/9b+16/81b+b²+c²-8/9c+c²≥
⇔a²+b²+c² -8/9(7/4a+b+c)+49/81+16/81+16/81≥0
⇔1-8/9(7/4a+b+c)+1≥0
⇔-8/9(7/4a+b+c)≥-2
⇔7/4a+b+c≤9/4
⇔4(7/4a+b+c)≤9
⇔P≤9
Dấu "=" xảy ra ⇔a-7/9=0 ,b-4/9=0 và c-4/9=0
⇔a=7/9,b=c=4/9