a, Ta có: A= 3 + 3^2 + 3^3+............+ 3^2004
3.A= 3^2+ 3^3+......_ 3^2005
3.A- A= ( 3^2+ 3^3+ .....+ 3^2005) - ( 3+ 3^2+.....+ 3^2004)
2.A= 3^2005- 3
A= (3^2005 - 3)/2
Vậy A= ( 3^2005- 3)/2
b, Ta có:
A= 3+ 3^2+ 3^3+.......+ 3^2004
= ( 3+ 3^2+ 3^3 ) + ( 3^4+ 3^5+ 3^6)+....+ ( 3^2002+ 3^2003+ 3^2004)
= ( 3+ 9+ 27) + 3^3. ( 3+ 3^2+ 3^30) + .... + 3^2001. ( 3+ 3^2+ 3^3)
= 39+ 3^3. 39+.........+ 3^2001. 39
= 39. ( 1+ 3^3+....+ 3^2001)
= 13. 3 . ( 1+ 3^3+ 20001) chia hết cho 13 ⇒ A chai hết cho 13
c, Theo câu a ta có A=( 3^2005- 3 ) : 2
⇒ 2.A+ 3= 3^n
3^2005 - 3+ 3= 3^n
⇒ 3^2005 = 3^n
⇒ n= 2005
Vậy n= 2005
~ Học tốt!~