`A(x)=6x^3-8x^2+5x+4x`
`A(x)=(6x^3-2x^2)+(-6x^2+2x)+(3x-1)+3`
`A(x)=2x^2(3x-1)-2x(3x-1)+(3x-1)+3`
`A(x)=(3x-1)(2x^2-2x+1)+3`
ta có `(3x-1)(2x^2-2x+1)vdots (3x-1)`
hay `(3x-1)(2x^2-2x+1)vdots B(x)`
Để `A(x)vdotsB(x)` thì :
`3=3x-1`
`<=>3x=3+1`
`<=>3x=4`
`<=>x=4/3`
`------------------`
`A=-2x^2-5y^2+2x+2xy+8y-2020`
`-A=2x^2+5y^2-2x-2xy-8y+2020`
`-A=(x^2-2xy+y^2)+(x^2-2x+1)+(4y^2-8y+4)+2015`
`-A=(x-y)^2+(x-1)^2+4(y-1)^2+2015`
$\begin{cases}(x-y)^2\ge0\forall x,y\\(x-1)^2\ge0\forall x\\4(y-1)^2\ge 0\forall y\end{cases}\to(x-y)^2+(x-1)^2+4(y-1)^2\ge0\forall x,y$
`to(x-y)^2+(x-1)^2+4(y-1)^2+2015>=2015AAx,y`
hay `-A>=2015`
`toA<=-2015`
`toA_min=-2015<=>x=y=1`