Cho a,b,c>0 Chứng minh rằng:
\(\dfrac{b+c}{a^2+bc}+\dfrac{c+a}{b^2+ca}+\dfrac{a+b}{c^2+ab}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)
\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)
\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)
Xảy ra khi \(a=b=c\)
Tìm các số a,b,c nguyên dương thỏa mãn:
\(a^3+5a^2+21=7^b\) và \(a+5=7^c\)
Giải phương trình \(\dfrac{x^2+x}{x^2+3}-\dfrac{3x^2-x+15}{x^2+4}+\dfrac{x^2+x+2}{x^2+5}+x^3-3x^2+1=0\)
3)C={3,7,11,15,19,23,27,31,35}
13 +23+33+43+53=...?
a.1510
b. 153
c. 152
d. 1515
1. Cho \(x,y,z\) là 3 số thực dương thõa mản xyz = 1. C/m BĐT
\(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}\le\dfrac{3}{16}\)
2. Cho x,y,z không âm và thõa mản \(x^2+y^2+z^2=1\). C/m BĐT
\(\left(x^2y+y^2z+z^2x\right)\left(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\right)\le\dfrac{3}{2}\)
Tìm tất cả các số thực k sao cho BĐT sau đúng với mọi số thực không âm a,b,c
\(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}+k.max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}\le a^2+b^2+c^2\)
Tổng các số tự nhiên từ 1 đến 99 là:
a. 4900
b. 4950
c.5000
d.5050
Cho x;y là các số thực dương sao cho \(2x+y\) và \(2y+x\) khác 2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\dfrac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(x+2y-2\right)^2}-3\left(x+y\right)\)
Ace Legona,Songoku hai bn giúp mk nha
Cho a,b,c > 0 thỏa mãn \(ab+bc+ca+2abc=1\). Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-2\left(a+b+c\right)\)
tim so tu nhien n so cho so sau la so chinh phuong:
n4 + 2n3 + 2n2 +n +7
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến