Ta có:
$a+b+c=0$
$⇔a+b=-c$
⇔$(a+b)^{5}$ =$-c^{5}$
⇔$a^{5}$ +$5a^{4}b$ +$10a³b²+10a²b³$+$5ab^{4}$ +$b^{5}$ =$-c^{5}$
⇔$a^{5}$+$b^{5}$+$c^{5}$=$-5ab(a³+b³2a²b+2ab²)$
⇔$a^{5}$+$b^{5}$+$c^{5}$=$-5ab[(a³+b³)+2ab(a+b)]$
⇔$a^{5}$+$b^{5}$+$c^{5}$=$-5ab(a+b)(a²+ab+b²)$
⇔$a^{5}$+$b^{5}$+$c^{5}$=$-5abc(a²+ab+b²)$
⇔$a^{5}$+$b^{5}$+$c^{5}$ chia hết cho $5abc(đpcm)$