Giải thích các bước giải:
Ta có:
$a^2-b^2-c^2=a^2+2bc-(b^2+2bc+c^2)=a^2+2bc-(b+c)^2=a^2+2bc-(-a)^2=a^2+2bc-a^2=2bc$
$\rightarrow \dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{2bc}=\dfrac{a^3}{2abc}$
Tương tự ta có :
$ \dfrac{b^2}{b^2-c^2-a^2}=\dfrac{b^3}{2abc}$
$ \dfrac{c^2}{c^2-a^2-b^2}=\dfrac{c^3}{2abc}$
$\rightarrow P=\dfrac{a^3+b^3+c^3}{2abc}$
$\rightarrow P=\dfrac{0-3(-c)(-a)(-b)}{2abc}$
$\rightarrow P=\dfrac{3abc}{2abc}$
$\rightarrow P=\dfrac{3}{2}$