$A=\sin(a+b).\sin(a-b)$
$=\dfrac{-1}{2}(\cos 2a-\cos 2b)$
Mặt khác:
$\cos^2a=\dfrac{1}{16}$
$\Rightarrow \sin^2a=1-\cos^2a=\dfrac{15}{16}$
$\Rightarrow \cos 2a=\cos^2a-\sin^2a=\dfrac{-7}{8}$
$\cos^2b=\dfrac{1}{25}$
$\Rightarrow \sin^2b=1-\cos^2b=\dfrac{24}{25}$
$\Rightarrow \cos 2b=\cos^2b-\sin^2b=\dfrac{-23}{25}$
$\to A=\dfrac{-1}{2}(\dfrac{-7}{8}+\dfrac{23}{25})=\dfrac{-9}{400}$