Đáp án đúng: A Giải chi tiết:Ta có: \(\left( {{\rm{ax}} + by} \right)\left( {bx + ay} \right) = ab{x^2} + {a^2}xy + {b^2}xy + ab{y^2} = \left( {{x^2} + {y^2}} \right)ab + {a^2}xy + {b^2}xy\). Áp dụng bất đẳng thức Cauchy cho hai số không âm \({x^2},{y^2}\) ta có: \({x^2} + {y^2} \ge 2xy\). Mặt khác, \(a;b\) là các số không âm nên \(ab \ge 0\). Do đó, ta có \(\left( {{x^2} + {y^2}} \right)ab + {a^2}xy + {b^2}xy \ge 2xy.ab + {a^2}xy + {b^2}xy = {\left( {a + b} \right)^2}xy\) Suy ra ta có: \(\left( {{\rm{ax}} + by} \right)\left( {bx + ay} \right) \ge {\left( {a + b} \right)^2}xy\). Chọn A.