Cho ba điểm A, B, C cố định thẳng hàng theo thứ tự đó. Vẽ đường tròn (O; R) bất kỳ đi qua B và C (BC2R). Từ A kẻ các tiếp tuyến AM, AN đến (O) (M, N là tiếp điểm). Gọi I, K lần lượt là trung điểm của BC và MN; MN cắt BC tại D. Chứng minh:
a) AM2 = AB.AC
b) AMON; AMOI là các tứ giác nội tiếp đường tròn.
c) Khi đường tròn (O) thay đổi, tâm đường tròn ngoại tiếp OID luôn thuộc một đường thẳng cố định.