Ta có:
`x/(x+y+z) < x/(x+y)` `(1)`
`y/(x+y+t) < y/(x+y)` `(2)`
`z/(y+z+t) < z/(z+t)` `(3)`
`t/(x+z+t) < t/(z+t) ` `(4)`
Từ `(1) ; (2) ; (3); (4)` cộng vế với vế ta được:
`x/(x+y+z) + y/(x+y+t) + z/(y+z+t) + t/(x+z+t) < x/(x+y) + y/(x+y) + z/(z+t) + t/(z+t)`
`=> M < (x+y)/(x+y) + (z+t)/(z+t)`
`=> M < 1+1 =2`
`=> M^10 < 2^10 = 1024 < 1025`
`=> M^10 < 1025`
Vậy `M^10 < 1025`