P=(2x−1x+3−x3−x−3−10xx2−9):x+2x−3
a)ĐKXĐ:x2−9≠0⇔x≠±3P=[(2x−1)(x−3)(x+3)(x−3)+x(x+3)(x+3)(x−3)−3−10x(x+3)(x−3)]:x+2x−3→P=2x2−7x+3+x2+3x−3+10x(x+3)(x−3)⋅x−3x+2→P=3x2+6xx+3⋅1x+2→P=3x(x+2)x+3⋅1x+2→P=3xx+3b)P=3xx+3=3x+3−3x+3=3(x+1)−3x+3=3−3x+3P∈Z⇔3x+3∈Z⇔x+3∈Ư(3)={−3;−1;1;3}⇔x={−4;−2;0;2}P=(2x−1x+3−x3−x−3−10xx2−9):x+2x−3a)ĐKXĐ:x2−9≠0⇔x≠±3P=[(2x−1)(x−3)(x+3)(x−3)+x(x+3)(x+3)(x−3)−3−10x(x+3)(x−3)]:x+2x−3→P=2x2−7x+3+x2+3x−3+10x(x+3)(x−3)⋅x−3x+2→P=3x2+6xx+3⋅1x+2→P=3x(x+2)x+3⋅1x+2→P=3xx+3b)P=3xx+3=3x+3−3x+3=3(x+1)−3x+3=3−3x+3P∈Z⇔3x+3∈Z⇔x+3∈Ư(3)={−3;−1;1;3}⇔x={−4;−2;0;2}