Đáp án:
Giải thích các bước giải:
Ta có P=$\frac{√a+3}{√a-2}$- $\frac{√a-1}{√a+2}$+ $\frac{4√a-4}{4-a}$
⇔P=$\frac{√a+3}{√a-2}$ -$\frac{√a-1}{√a+2}$- $\frac{4√a-4}{a-4}$
⇔P=$\frac{(√a+3)(√a+2)}{(√a-2)(√a+2)}$- $\frac{(√a-1)(√a-2)}{(√a-2)(√a+2)}$ -$\frac{4√a-4}{(√a-2)(√a+2)}$
⇔P=$\frac{a+3√a+2√a+6-(a-√a-2√a+2)-(4√a-4)}{(√a-2)(√a+2)}$
⇔P=$\frac{a+5√a+6-a+3√a-2-4√a+4}{(√a-2)(√a+2)}$
⇔P=$\frac{4√a+8}{(√a-2)(√a+2)}$
⇔P=$\frac{4(√a+2)}{(√a-2)(√a+2)}$
⇔P=$\frac{4}{√a-2}$
Vậy P=$\frac{x}{y}$ với a $\geq$ 0 và a$\neq$ 4
b) Với a=9 thì giá trị của P là
P=$\frac{4}{√9-2}$= $\frac{4}{3-2}$ =4
Vậy P=4 với a=9