Cho (C) : x2+y2-2x-2my+m2-24=0 có tâm I và đường thẳng Δ: mx + 4y = 0. Tìm m biết đường thẳng Δ cắt (C) tại 2 điểm phân biệt A,B thoả mãn SIAB = 12.
Đường tròn (C) có tâm I(1; m), bán kính R = 5. Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB:
Cho đường tròn (C) có phương trình:
x2 + y2 – 4x + 8y – 5 = 0
a) Tìm tọa độ tâm và bán kính của (C)
b) Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c) Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng 3x – 4y + 5 = 0
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d : 4x – 2y – 8 = 0
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Lập phương trình đường tròn đi qua ba điểm: M(-2; 4); N(5; 5); P(6; -2)
Tìm tâm và bán kính của đường tròn :
x2 + y2 – 4x + 6y – 3 = 0.
Lập phương trình đường tròn (C) có đường kính AB với A(1; 1) và B(7; 5)
Lập phương trình đường tròn (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng d : x – 2y + 7 = 0
Lập phương trình đường tròn (C) có tâm I(-2; 3) và đi qua M(2; -3)
chứng minh rằng : đường thẳng (Δ) : 2x - y = 0 và đường tròn (C) : x2 + y2 - 4x + 2y - 1 = 0 cắt nhau . Tính độ dài dây cung .
Từ một điểm S ở ngoài đt (o) kẻ tiếp tuyến SA và một các tuyến SBC ( góc BAC <90) Phân giác góc BAC cắt BC tại D và cắt đt tại điểm thứ hai là E Cac tiếp tuyến của đt (o) tại C và E cắt nhau tại N. P là giao điểm AE và CN
CM a ) SA =SD B) EN//BC C) \(\frac{1}{CN}=\frac{1}{CD}+\frac{1}{CP}\) ANH CHỊ GIÚP E VỚI Ạ CÂU C Í Ở MATHONLINE KHÔNG AI GIÚP EM MỚI SANG ĐÂY
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến