Giải thích các bước giải:
Ta có :
$\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}$
$\rightarrow \dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}$
$\rightarrow 1+\dfrac{9a}{a+b}=1+\dfrac{9b}{b+c}$
$\rightarrow \dfrac{a}{a+b}=\dfrac{b}{b+c}$
$\rightarrow \dfrac{a+b}{a}=\dfrac{b+c}{b}$
$\rightarrow 1+\dfrac{b}{a}=1+\dfrac{c}{b}$
$\rightarrow \dfrac{b}{a}=\dfrac{c}{b}$
$\rightarrow \dfrac{a}{b}=\dfrac{b}{c}$