`(2014a^2+b^2+c^2)/(a^2)=(2014b^2+a^2+c^2)/(b^2)=(2014c^2+b^2+a^2)/(c^2)`
`⇔(b^2+c^2)/(a^2)=(a^2+c^2)/(b^2)=(b^2+a^2)/(c^2)=(2(a^2+b^2+c^2))/(a^2+b^2+c^2)=2`
`⇔2a^2=b^2+c^2`
`⇔2c^2=a^2+b^2`
`⇔2b^2=a^2+c^2`
`⇒a^2=b^2=c^2`
`⇒(2015a^2+b^2)/(a^2)+(2015b^2+c^2)/(b^2)+(2015c^2+a^2)/(c^2)`
`=(2016a^2)/(a^2)+(2016a^2)/(a^2)+(2016a^2)/(a^2)`
`=2016+2016+2016`
`=6048`