Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng $\frac{a}{2a+b^{2}}+\frac{b}{2b+c^{2}}+\frac{c}{2c+a^{2}}\leq \frac{1}{7}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )$

Các câu hỏi liên quan