Đáp án: `sin(x+y).sin(x-y)=\frac{2079}{4225}`
Giải:
`A=sin(x+y).sin(x-y)`
`A=\frac{1}{2}[cos(x+y-x+y)-cos(x+y+x-y)]`
`A=\frac{1}{2}[cos(2y)-cos(2x)]`
`A=\frac{1}{2}(1-2sin^2y-2cos^2x+1)`
`A=\frac{1}{2}[2-2.(\frac{5}{13})^2-2.(\frac{3}{5})^2]`
`A=\frac{2079}{4225}`
Vậy `sin(x+y).sin(x-y)=\frac{2079}{4225}`