Đáp án: 18 đỉnh
Giải thích các bước giải:
`1` đỉnh nối với `n-3` đỉnh còn lại (trừ đi đỉnh đó và hai đỉnh kề với đỉnh đó) tạo thành $n-3$ đường chéo
Có $n$ đỉnh tạo được $n(n-3)$, nhưng mỗi đường chéo lại được tính hai lần
Vậy số đường chéo được tạo từ đa giác đều $n$ đỉnh là: $\dfrac{n.(n-3)}{2}$
$\rightarrow \dfrac{n.(n-3)}{2}=135\rightarrow n^2-3n-270=0\rightarrow (n+15)(n-18)=0\rightarrow n=18$