a)
Xét $\Delta HBA$ và $\Delta ABC$, ta có:
$\widehat{ABC}$ là góc chung
$\widehat{BHA}=\widehat{BAC}=90{}^\circ $
$\to \Delta HBA\backsim\Delta ABC\,\,\,\left( g.g \right)$
b)
Xét $\Delta BAH$ và $\Delta ACH$, ta có:
$\widehat{BHA}=\widehat{AHC}=90{}^\circ $
$\widehat{ABH}=\widehat{CAH}$ ( cùng phụ $\widehat{ACB}$ )
$\to \Delta BAH\backsim\Delta ACH\,\,\,\left( g.g \right)$
$\to \dfrac{BA}{AC}=\dfrac{BH}{AH}$
$\to \dfrac{\dfrac{1}{2}BD}{AC}=\dfrac{BH}{2AM}$
$\to \dfrac{BD}{AC}=\dfrac{BH}{AM}$
Xét $\Delta BDH$ và $\Delta ACM$, ta có:
$\dfrac{BD}{AC}=\dfrac{BH}{AM}\,\,\,\left( cmt \right)$
$\widehat{DBH}=\widehat{CAM}$ ( cùng phụ $\widehat{ACB}$ )
$\to \Delta BDH\backsim\Delta ACM\,\,\,\left( c.g.c \right)$
$\to \dfrac{HD}{MC}=\dfrac{BD}{AC}$
$\to HD.AC=BD.MC$
c)
Gọi $E$ là giao điểm $MC$ và $HD$
Vì $\Delta BDH\backsim\Delta ACM\,\,\,\left( cmt \right)$
$\to \widehat{BHD}=\widehat{AMC}$ ( hai góc tương ứng )
Mà: $\begin{cases}\widehat{BHD}+\widehat{EHC}=180{}^\circ\\\widehat{AMC}+\widehat{HMC}=180{}^\circ\end{cases}$ ( hai góc kề bù )
Nên: $\widehat{EHC}=\widehat{HMC}$
Mà: $\widehat{EHC}+\widehat{EHM}=90{}^\circ $
$\to \widehat{HMC}+\widehat{EHM}=90{}^\circ $
Hay $\Delta EMH$ vuông tại $E$
$\to EM\bot EH$
$\to MC\bot DH$