Cho \(\Delta ABC,\) gọi \(I\)  là điểm trên cạnh \(BC\)  sao cho \(2CI = 3BI.\) Gọi \(F\)  là điểm trên cạnh \(BC\)  kéo dài sao cho \(5FB = 2FC.\)

1. Tính \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} .\)  

2. Gọi \(G\)  là trọng tâm \(\Delta ABC.\) Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} .\)  
A.\(\begin{array}{l}1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} - \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .\end{array}\)
B.\(\begin{array}{l}1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} + \frac{1}{{16}}\overrightarrow {AF} .\end{array}\)
C.\(\begin{array}{l}1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .\end{array}\)
D.\(\begin{array}{l}1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \\2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .\end{array}\)

Các câu hỏi liên quan