Cho \(\left( \Delta \right):\,\,\dfrac{{x - 1}}{4} = \dfrac{{y - 2}}{1} = \dfrac{z}{3},\,\,\left( P \right):\,\,x + y + z + 1 = 0\). \(\left( d \right)\) qua \(M\left( {1;1;1} \right)\), \(d//\left( P \right),\,\,d \bot \Delta \) có phương trình là:
A.\(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z - 1}}{3}\)
B.\(\dfrac{{x - 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 1}}{{ - 3}}\)
C.\(\dfrac{{x - 1}}{4} = \dfrac{{y - 1}}{1} = \dfrac{{z - 1}}{5}\)
D.\(\dfrac{{x - 1}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z - 1}}{6}\)