Cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) (A và B là hai tiếp điểm). Gọi H là giao điểm của MO và AB. Qua M vẽ cát tuyến MCD của đường tròn (O) ( C và D thuộc đường tròn (O)) sao cho đường thẳng MD cắt đoạn thẳng HB. Gọi I là trung điểm dây cung CD. a) Chứng minh: OI CD tại I và tứ giác MAOI nội tiếp. b) Chứng minh: . c) Trên cung nhỏ AD lấy điểm N sao cho DN = DB. Qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song với BD cắt cạnh AB tại F. Chứng minh: Tam giác CEF cân

Các câu hỏi liên quan