Ta có:
$OA = OB = R$
$\Rightarrow ΔBOA$ cân tại $O$
$\Rightarrow \widehat{BOA} = 180^o - 2\widehat{BAO}$
Tương tự ta được:
$\widehat{COD} = 180^o - 2\widehat{DCO}$
mà $\widehat{BAO} = \widehat{DCO}$ (so le trong)
nên $\widehat{BOA} = \widehat{COD}$
Lại có: $A, O, C$ thẳng hàng
$\Rightarrow B, O, D$ thẳng hàng