Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Tìm nguyên hàm của hàm số \(f'\left( x \right)\ln x\).
A.\(\int {f'\left( x \right)\ln xdx} = \frac{{\ln x}}{{{x^2}}} + \frac{1}{{{x^2}}} + C\)
B.\(\int {f'\left( x \right)\ln xdx} = - \left( {\frac{{\ln x}}{{{x^2}}} + \frac{1}{{2{x^2}}}} \right) + C\)
C.\(\int {f'\left( x \right)\ln xdx} = - \left( {\frac{{\ln x}}{{{x^2}}} + \frac{1}{{{x^2}}}} \right) + C\)
D.\(\int {f'\left( x \right)\ln xdx} = \frac{{\ln x}}{{{x^2}}} + \frac{1}{{2{x^2}}} + C\)