Cho góc xOy và điểm M cố định thuộc miền trong của góc. Một đường thẳng thay đổi vị trí nhưng luôn đi qua M cắt các tia Ox và Oy theo thứ tự ở A, B. Gọi S1, S2 theo thứ tự là diện tích các tam giác MOA, MOB. Chứng minh rằng tổng $\frac{1}{S_{1}}$ + $\frac{1}{S_{2}}$ có giá trị không đổi.