Cho hai hàm số \(y = \left( {m + 1} \right){x^2} + 3{m^2}x + m\) và \(y = \left( {m + 1} \right){x^2} + 12x + 2\). Tìm tất cả các giá trị của m để đồ thị hai hàm số đã cho không cắt nhau. A.\(m = 2\) B.\(m = - 2\) C.\(m = \pm 2\) D.\(m = 1\)
Đáp án đúng: B Giải chi tiết:Xét phương trình hoành độ giao điểm: \(\begin{array}{l}\,\,\,\,\,\,\left( {m + 1} \right){x^2} + 3{m^2}x + m = \left( {m + 1} \right){x^2} + 12x + 2\\ \Leftrightarrow 3{m^2}x + m = 12x + 2 \Leftrightarrow \left( {3{m^2} - 12} \right)x = 2 - m\,\,\left( * \right)\end{array}\) Để hai đồ thị hàm số đã cho không cắt nhau thì phương trình (*) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}3{m^2} - 12 = 0\\2 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \pm 2\\m \ne 2\end{array} \right. \Leftrightarrow m = - 2\). Chọn B.