Đáp án: $B$
Giải thích các bước giải:
Để $f(x)$ có giới hạn tại $x=1$
$\to \lim_{x\to1}\dfrac{1}{x-1}-\dfrac{3}{x^3-1}=\lim_{x\to1}mx+2$
$\to \lim_{x\to1}\dfrac{x^3-1-3(x-1)}{(x-1)(x^3-1)}=m\cdot 1+2$
$\to \lim_{x\to1}\dfrac{(x-1)(x^2+x+1)-3(x-1)}{(x-1)(x-1)(x^2+x+1)}=m\cdot 1+2$
$\to \lim_{x\to1}\dfrac{(x-1)(x^2+x+1-3)}{(x-1)^2(x^2+x+1)}=m\cdot 1+2$
$\to \lim_{x\to1}\dfrac{(x-1)(x^2+x-2)}{(x-1)^2(x^2+x+1)}=m\cdot 1+2$
$\to \lim_{x\to1}\dfrac{(x-1)(x-1)(x+2)}{(x-1)^2(x^2+x+1)}=m\cdot 1+2$
$\to \lim_{x\to1}\dfrac{x+2}{x^2+x+1}=m+2$
$\to \dfrac{1+2}{1^2+1+1}=m+2$
$\to m+2=1$
$\to m=-1$