Cho hàm số \(f(x)\) nghịch biến trên \(\mathbb{R}\). Giá trị nhỏ nhất của hàm số \(g(x) = {e^{3{x^2} - 2{x^3}}} - f(x)\) trên đoạn \(\left[ {0;1} \right]\) bằng A.\(f(0)\) B.\(e - f(1)\) C.\(f(1)\) D.\(1 - f(0)\)
Đáp án đúng: D Phương pháp giải: - Tính đạo hàm hàm số \(g\left( x \right)\), đánh giá và sử dụng giả thiết chứng minh \(g'\left( x \right) > 0\). - Nếu hàm số \(y = f\left( x \right)\) đồng biến trên \(\left[ {a;b} \right]\) thì giá trị nhỏ nhất của hàm số trên \(\left[ {a;b} \right]\) là \(f\left( a \right)\).Giải chi tiết:TXĐ : \(D = \mathbb{R}\). Ta có \(g'\left( x \right) = \left( {6x - 6{x^2}} \right){e^{3{x^2} - 2{x^3}}} - f'\left( x \right)\) Vì \(f\left( x \right)\) nghịch biến trên \(\mathbb{R}\) nên \(f'\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\) \( \Rightarrow - f'\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\). Lại có \(\left( {6x - 6{x^2}} \right){e^{3{x^2} - 2{x^3}}} \ge 0\,\,\forall x \in \left[ {0;1} \right]\), do đó \(g'\left( x \right) \ge 0\) \(\forall x \in \mathbb{R}\) và bằng 0 tại hữu hạn điểm. \( \Rightarrow \) Hàm số \(y = g\left( x \right)\) đồng biến trên \(\left( {0;1} \right)\). Vậy \(\mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = {e^0} - f\left( 0 \right) = 1 - f\left( 0 \right)\). Chọn D.