Đáp án đúng: C Giải chi tiết:Gọi \(M\left( m;y\left( m \right) \right)\) thuộc \(\left( C \right)\)\(\Rightarrow \,\,{y}'\left( m \right)=3{{m}^{2}}-6m+2\) và \(y\left( m \right)={{m}^{3}}-3{{m}^{2}}+2m.\) Suy ra phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y-{{m}^{3}}+3{{m}^{2}}-2m=\left( 3{{m}^{2}}-6m+2 \right)\left( x-m \right).\) Vì tiếp tuyến \(d\) đi qua \(A\left( -\,1;0 \right)\) suy ra \(-\,{{m}^{3}}+3{{m}^{2}}-2m=\left( 3{{m}^{2}}-6m+2 \right)\left( -\,1-m \right)\Leftrightarrow {{m}^{3}}-3m+1=0.\) Giải phương trình, tìm được 3 nghiệm \(m\) \(\xrightarrow{{}}\) Có tất cả 3 tiếp tuyến cần tìm. Chọn C.