Cho hàm số \(y = {x^4} - 2{x^2}\) có đồ thị \(\left( S \right)\). Gọi \(A,\,\,B,\,\,C\) là các điểm phân biệt trên \(\left( S \right)\) có tiếp tuyến với \(\left( S \right)\) tại các điểm đó song song với nhau. Biết \(A,\,\,B,\,\,C\) cùng nằm trên một parabol \(\left( P \right)\) có đỉnh \(I\left( {\frac{1}{6};{y_0}} \right)\). Tìm \({y_0}\)?
A.\({y_0} = \frac{1}{6}\)
B.\({y_0} = - \frac{1}{{36}}\)
C.\({y_0} = \frac{1}{{36}}\)
D.\({y_0} = - \frac{1}{6}\)