Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)g\left( x \right) + 2018\) với \(g\left( x \right) < 0\,\,\forall x \in \mathbb{R}\). Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) nghịch biến trên khoảng nào?
A.\(\left( {1; + \infty } \right)\)
B.\(\left( {0;3} \right)\)
C.\(\left( { - \infty ;3} \right)\)
D.\(\left( {4; + \infty } \right)\)