Đáp án:
`m∈{-1;-2}`
Giải thích các bước giải:
Hàm số là hàm số bậc nhất khi
\begin{cases} m^2+3m+2=0 (I) \\ m^2-4m+3n^2\ne0(II) \end{cases}
Xét `(I)`
`m^2+3m+2=0`
`->m^2+m+2m+2=0`
`->m(m+1)+2(m+1)=0`
`->(m+2)(m+1)=0`
`->`\(\left[ \begin{array}{l}m=-1\\m=-2\end{array} \right.\)
Với `m=-1`
`->(II)` trở thành
`1+4+3n^2\ne0`
`->3n^2+5\ne0` (luôn đúng do `3n^2+5>0∀n`)
Với `m=-2`
`->(II)` trở thành
`4+8+3n^2\ne0`
`->3n^2+12\ne0` (luôn đúng do `3n^2+12>0∀n`)