DO M là trung điểm OD nên AM là đường trung tuyến của tam giác ADO. Do N là trung điểm OB nên CN là đường trung tuyến tam giác CBO.
Xét tam giác ADO và CBO có
$AD = BC$
$DO = BO$
$AO = CO$
Vậy tam giác ADO = tam giác CBO. Lại có AM và CN là hai đường trung tuyến tương ứng đỉnh, nên AM = CN.
CMTT ta cũng có AN = CM.
Vậy tứ giác AMCN là hình bình hành, do đó AM//CN, nên AE // CF.
Mặt khác, lại có AF // CE (do AB // CD).
Vậy tứ giác AFCE là hình bình hành, do đó AC giao EF tại trung điểm mỗi đường.
Lại có AC giao BD tại O nên O là trung điểm AC.Do đó O là trung điểm EF.
Vậy AC, BD, EF đồng quy tại O là trung điểm mỗi đường.