Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng \(\left( \alpha \right)\) thay đổi luôn đi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D).
a) Chứng minh MN song song với mặt phẳng (ABCD).
b) Chứng minh giao điểm I của AM và BN thuộc một đường thẳng cố định.
c) Gọi K là giao điểm của AN và BM. Chứng minh \(\frac{{AB}}{{MN}} - \frac{{BC}}{{SK}} = 1\).
A.
B.
C.
D.