Giải thích các bước giải:
Gọi $FH//AB, F\in SA,H\in SB\to FH//AB//IJ$
Mà G là trọng tâm $\Delta SAB\to \dfrac{FH}{AB}=\dfrac{SG}{SE}=\dfrac 23\to FH=\dfrac 23 AB$
Mà $FHJI$ là hình bình hành
$\to FH=IJ$
Do $IJ$ là đường trung bình hình thang $\to IJ=\dfrac 12(AB+CD)$
$\to \dfrac 23AB=\dfrac 12(AB+CD)\to \dfrac 16 AB=\dfrac 12 CD\to AB=3CD\to C$