Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và \(D,AB = AD = 2a,CD = a\). Gọi I là trung điểm cạnh AD, biết hai mặt phẳng \(\left( {SBI} \right),\left( {SCI} \right)\) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\dfrac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng \(\left( {SBC} \right),\left( {ABCD} \right)\)
A.\({36^o}\)
B.\({45^o}\)
C.\({60^o}\)
D.\({30^o}\)