Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Trên AO lấy điểm I bất kì (I khác A và O). Thiết diện của hình chóp khi cắt bởi mp(P) qua I song song với SA và BD là:
A.Một tam giác B. Một hình thang C.Một hình bình hành D.Một ngũ giác
Đáp án đúng: D Giải chi tiết: Ta có: (P) và (ABCD) có điểm I chung. Hơn nữa: \(\left( P \right)\parallel BD\subset \left( ABCD \right)\Rightarrow \) giao tuyến của (P) và (ABCD) là đường thẳng qua I và song song với BD cắt AB tại E và cắt AD tại F. Suy ra EF // BD. Mp(P) và (SAC) có điểm I chung. \(\left( P \right)\parallel SA\subset \left( SAC \right)\Rightarrow \) Giao tuyến của (P) và (SAC) là đường thẳng đi qua I và song song với SA cắt SC tại G. Tương tự như vậy ta xác định được \(\begin{array}{l}\left( P \right) \cap \left( {SAB} \right) = EH\parallel SA\,\,\left( {H \in SB} \right)\\\left( P \right) \cap \left( {SAD} \right) = FJ\parallel SA\,\,\left( {J \in SD} \right)\end{array}\) Vậy thiết diện là ngũ giác EFJGH. Chọn D.