Đáp án đúng: C
Giải chi tiết:
Gọi \(O\) là tâm đường tròn ngoại tiếp \(\Delta \,ABC\Rightarrow \,\,SO\bot \left( ABC \right)\).
Gọi \(M\) là trung điểm của \(BC\Rightarrow \,\,OM\bot BC,\) kẻ \(OH\bot SM\,\,\,\,\,\,\left( H\in SM \right).\)
Suy ra \(OH\bot \left( SBC \right)\Rightarrow \,\,d\left( O;\left( SBC \right) \right)=OH.\)
Ta có : \(\frac{AM}{OM}=3\Rightarrow d\left( A,\ \left( SBC \right) \right)=3d\left( O;\ \left( SBC \right) \right)\Rightarrow \,\,d\left( A;\left( SBC \right) \right)=3\,\,\times \,\,OH.\)
Tam giác \(SBM\) vuông tại \(M,\) có \(SM=\sqrt{S{{B}^{2}}-B{{M}^{2}}}=\frac{a\sqrt{15}}{2}.\) Có : \(AM=\frac{a\sqrt{3}}{2}\Rightarrow OM=\frac{1}{3}AM=\frac{a\sqrt{3}}{6}.\)
Tam giác \(SOM\) vuông tại \(M,\) có : \(SO=\sqrt{S{{M}^{2}}-O{{M}^{2}}}=\sqrt{{{\left( \frac{a\sqrt{15}}{2} \right)}^{2}}-{{\left( \frac{a\sqrt{3}}{6} \right)}^{2}}}=\frac{a\sqrt{33}}{3}.\)
Khi đó \(\frac{1}{O{{H}^{2}}}=\frac{1}{S{{O}^{2}}}+\frac{1}{O{{M}^{2}}}=\frac{1}{{{\left( \frac{a\sqrt{33}}{3} \right)}^{2}}}+\frac{1}{{{\left( \frac{a\sqrt{3}}{6} \right)}^{2}}}=\frac{135}{11{{a}^{2}}}\Rightarrow \,\,OH=\frac{a\sqrt{165}}{45}.\)
Vậy khoảng cách cần tính là \(d\left( A;\left( SBC \right) \right)=3\,\,\times \,\,OH=\frac{a\sqrt{165}}{15}.\)
Chọn C