Giải thích các bước giải:
a.Ta có: $S_{ABCD}=12^2=144$
b.Ta có:
$S_{ABE}=\dfrac13S_{ABCD}$
$\to S_{ABE}=\dfrac13\cdot 2S_{ABD}$
$\to S_{ABE}=\dfrac23S_{ABD}$
$\to AE=\dfrac23AD$
$\to AE=8$
c.Ta có $AE=\dfrac23AD$
$\to \dfrac{AE}{AD}=\dfrac23$
$\to\dfrac{AE}{AD-AE}=\dfrac2{3-2}$
$\to \dfrac{AE}{ED}=\dfrac{2}{1}$
Mà $CD//AB\to \dfrac{AB}{DF}=\dfrac{EA}{ED}=\dfrac21$
$\to DF=\dfrac12AB=6$
$\to S_{ADF}=\dfrac12AD\cdot AF=36$
d.Kẻ $BH\perp BE, H\in CD$
Ta có $\widehat{EBI}=45^o\to BI$ là phân giác $\widehat{EBH}$
Xét $\Delta BAE,\Delta BCH$ có;
$\widehat{BAE}=\widehat{BCH}=90^o$
$BA=BC$
$\widehat{ABE}=90^o-\widehat{EBC}=\widehat{CBH}$
$\to\Delta BAE=\Delta BCH(g.c.g)$
$\to BE=BH, CH=AE=8\to DE=4$
Xét $\Delta BEI, \Delta BHI$ có:
Chung $BI$
$\widehat{EBI}=\widehat{HBI}$ vì $BI$ là phân giác $\widehat{EBH}$
$BE=BH$
$\to\Delta BEI=\Delta BHI(c.g.c)$
$\to S_{BEI}=S_{BHI}=\dfrac12\cdot BC\cdot HI$
Mặt khác $EI=IH=IC+CH=(CD-ID)+8=(12-ID)+8=20-ID$
Ta có $\Delta DEI$ vuông tại $D$
$\to EI^2=ED^2+DI^2$
$\to (20-ID)^2=4^2+DI^2$
$\to ID=\dfrac{48}{5}$
$\to IH=20-ID=20-\dfrac{48}{5}=\dfrac{52}{5}$
$\to S_{BIH}=\dfrac12\cdot 12\cdot \dfrac{52}{5}=\dfrac{312}{5}$
$\to S_{BEI}=\dfrac{312}{5}$
e.Từ câu $d\to BE=BH$
Ta có $BE\perp BH\to\Delta BHF$ vuông tại $B$
Mà $BC\perp CD\to BC\perp FH$
$\to BC\cdot HF=BH\cdot BF(=2S_{BHF})$
$\to \dfrac{HF^2}{HF^2\cdot BC^2}=\dfrac{1}{BC^2}$
$\to \dfrac{HF^2}{(HF\cdot BC)^2}=\dfrac{1}{BC^2}$
$\to \dfrac{BF^2+BE^2}{(BH\cdot BF)^2}=\dfrac{1}{BC^2}$
$\to \dfrac{BF^2+BE^2}{BH^2\cdot BF^2}=\dfrac{1}{BC^2}$
$\to \dfrac{1}{BH^2}+\dfrac{1}{BF^2}=\dfrac{1}{BC^2}$
$\to \dfrac{1}{BE^2}+\dfrac{1}{BF^2}=\dfrac{1}{BC^2}$ không đổi