a.
$\left \{ {{(m - 1)x + y = m} \atop {x + (m - 1)y = 2}} \right.$ ⇔$\left \{ {{(m - 1)x + y = m} \atop {(m - 1)x + (m - 1)y = 2(m - 1)}} \right.$
⇔$[(m - 1)^{2} - 1]y = 2(m - 1) - m$
⇔$(m - y)m.y = m - 2$
⇔$m - y = m - 2 - \frac{1}{m}$
⇔$x = 2 - (m - 1)y = 2 - \frac{m - 1}{m} = \frac{m + 1}{m}$
⇔$2x^{2} - 7y = 1$
⇔$2(\frac{m + 1}{m})^{2} - 7\frac{1}{m} = 1$
⇔$2(m^{2} + 2m + 1) - 7m = m^{2}$
⇔$m^{2} - 3m + 2 = 0$
⇔\(\left[ \begin{array}{l}m = 1 (N)\\m = 2 (L)\end{array} \right.\)
b.
+ Ta có: $\left \{ {{x = \frac{m + 1}{m}} \atop {y = \frac{1}{m}}} \right.$
⇔$\left \{ {{x = \frac{m + 1}{m}} \atop {y + 1 = \frac{m + 1}{m}}} \right.$
⇔ $x - y = 1$.