Cho khối lập phương \(ABCD.A'B'C'D' \) cạnh \(a \). Các điểm E và \(F \) lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi \({V_1} \) là thể tích khối chứa điểm A’ và \({V_2} \) là thể tích khối chứa điểm C’. Khi đó \( \dfrac{{{V_1}}}{{{V_2}}} \) là.
A.\(\dfrac{{25}}{{47}}\).         
B.1.                                         
C.\(\dfrac{8}{{17}}\).              
D.\(\dfrac{{17}}{{25}}\).

Các câu hỏi liên quan