Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
M = \left( {x - 5} \right)\left( {3x + 15} \right) - 3x.\left( {x - 1} \right) - 3x\\
= \left( {x - 5} \right).3.\left( {x + 5} \right) - \left( {3{x^2} - 3x} \right) - 3x\\
= 3.\left( {{x^2} - 25} \right) - 3{x^2} + 3x - 3x\\
= 3{x^2} - 45 - 3{x^2}\\
= - 45,\,\,\,\forall x\\
b,\\
N = \left( {2x - 1} \right)\left( {4{x^2} + 2x + 1} \right) - 4{x^2}\left( {2x + 3} \right) + 12{x^2}\\
= \left( {2x - 1} \right).\left[ {{{\left( {2x} \right)}^2} + 2x.1 + {1^2}} \right] - \left( {8{x^3} + 12{x^2}} \right) + 12{x^2}\\
= {\left( {2x} \right)^3} - {1^3} - 8{x^3} - 12{x^2} + 12{x^2}\\
= 8{x^3} - 1 - 8{x^3}\\
= - 1,\,\,\,\forall x\\
5,\\
a,\\
4{x^2} - 1 - \left( {1 - 2x} \right).\left( { - 2x} \right) = 1\\
\Leftrightarrow {\left( {2x} \right)^2} - {1^2} - \left( {2x - 1} \right).2x = 1\\
\Leftrightarrow \left( {2x - 1} \right)\left( {2x + 1} \right) - \left( {2x - 1} \right).2x = 1\\
\Leftrightarrow \left( {2x - 1} \right).\left[ {\left( {2x + 1} \right) - 2x} \right] = 1\\
\Leftrightarrow 2x - 1 = 1\\
\Leftrightarrow x = 1\\
b,\\
\left( {3x - 2} \right)\left( {2x - 3} \right) - x.\left( {6x - 4} \right) = 11\\
\Leftrightarrow \left( {3x - 2} \right).\left( {2x - 3} \right) - x.2.\left( {3x - 2} \right) = 11\\
\Leftrightarrow \left( {3x - 2} \right).\left[ {\left( {2x - 3} \right) - 2x} \right] = 11\\
\Leftrightarrow \left( {3x - 2} \right).\left( { - 3} \right) = 11\\
\Leftrightarrow 3x - 2 = - \frac{{11}}{3}\\
\Leftrightarrow 3x = - \frac{5}{3}\\
\Leftrightarrow x = - \frac{5}{9}\\
c,\\
\left( {2x + 3} \right)\left( {4{x^2} - 6x + 9} \right) - 8x\left( {{x^2} - 3} \right) = 26\\
\Leftrightarrow \left( {2x + 3} \right).\left[ {{{\left( {2x} \right)}^2} - 2x.3 + {3^2}} \right] - \left( {8{x^3} - 24x} \right) = 26\\
\Leftrightarrow {\left( {2x} \right)^3} + {3^3} - 8{x^3} + 24x = 26\\
\Leftrightarrow 8{x^3} + 27 - 8{x^3} + 24x = 26\\
\Leftrightarrow 24x = - 1\\
\Leftrightarrow x = - \frac{1}{{24}}
\end{array}\)