Giả sử n³+2 chia hết cho 2016
⇒ n³+2 chia hết cho 3
Ta có: (n-1)³=n³-3n²+3n-1=n³+2-3n²+3n-3
Do n³+2 chia hết cho 3 và -3n²+3n-3 chia hết cho 3 nên (n-1)³ chia hết cho 3 hay n-1 chia hết cho 3 (do 3 là snt)
Đặt n-1=3k (k∈Z)
⇒ n=3k+1
⇒ n³+2=(3k+1)³+2=27k³+27k²+9k+1+2=27k³+27k²+9k+3 ko chia hết cho 9
Mà 2016 chia hết cho 9
⇒ điều giả sử sai
⇒n³+2 ko chia hết cho 2016