Cho nửa đường tròn \(\left( {O;R} \right)\) đường kính \(AB.\) Gọi \(C,D\) là hai điểm di chuyển trên cung tròn sao cho góc \(COD\) luôn bằng \(90^\circ \) (\(C\) nằm giữa \(A\) và \(D\)). Tiếp tuyến tại \(C,D\) cắt đường thẳng \(AB\) lần lượt tại \(F,G.\) Gọi \(E\) là giao điểm của \(FC\) và \(GD.\)
1) Tính chu vi của tam giác \(ECD\) theo \(R.\)
2) Khi tứ giác \(FCDG\) là hình thang cân. Hãy tính tỉ số \(\frac{{AB}}{{FG}}.\)
3) Chứng minh rằng \(FC.DG\) luôn là hằng số.
4) Tìm vị trí của \(C,D\) sao cho tích \(AD.BC\) đạt giá trị lớn nhất.
A.
B.
C.
D.

Các câu hỏi liên quan