Giải thích các bước giải:
Phương trình $x^2+3x+m=0(1)$ có 2 nghiệm $x_1;x_2$
$\begin{array}{l}
\Leftrightarrow \Delta \ge 0\\
\Leftrightarrow {3^2} - 4.1.m \ge 0\\
\Leftrightarrow m \le \dfrac{9}{4} (*)
\end{array}$
Theo ĐL Viet ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = - 3\\
{x_1}{x_2} = m
\end{array} \right.$
a) Do ${x_1} - {x_2} = 2 \Rightarrow {x_1} = \dfrac{{ - 1}}{2};{x_2} = \dfrac{{ - 5}}{2}$
Khi đó:
$\begin{array}{l}
{x_1}{x_2} = m\\
\Leftrightarrow \left( {\dfrac{{ - 1}}{2}} \right).\left( {\dfrac{{ - 5}}{2}} \right) = m\\
\Leftrightarrow m = \dfrac{5}{4}(tm(*))
\end{array}$
Vậy $m = \dfrac{5}{4}$
b) Ta có:
$\begin{array}{l}
x_1^2 + x_2^2 = 34\\
\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 34\\
\Leftrightarrow {\left( { - 3} \right)^2} - 2m = 34\\
\Leftrightarrow m = \dfrac{{ - 25}}{2}\left( {tm\left( * \right)} \right)
\end{array}$
Vậy $m = \dfrac{{ - 25}}{2}$
c) Ta có:
$\begin{array}{l}
x_1^2 - x_2^2 = 30\\
\Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) = 30\\
\Leftrightarrow {x_1} - {x_2} = - 10\\
\Rightarrow {x_1} = \dfrac{{ - 13}}{2};{x_2} = \dfrac{7}{2}
\end{array}$
Khi đó:
$\begin{array}{l}
{x_1}{x_2} = m\\
\Leftrightarrow \dfrac{{ - 13}}{2}.\dfrac{7}{2} = m\\
\Leftrightarrow m = \dfrac{{ - 91}}{4}\left( {tm\left( * \right)} \right)
\end{array}$
Vậy $m = \dfrac{{ - 91}}{4}$
d) Ta có:
${x_1} = 2{x_2} \Rightarrow {x_2} = - 1;{x_1} = - 2$
Khi đó:
$\begin{array}{l}
{x_1}{x_2} = m\\
\Leftrightarrow \left( { - 2} \right).\left( { - 1} \right) = m\\
\Leftrightarrow m = 2\left( {tm\left( * \right)} \right)
\end{array}$
Vậy $m=2$
e) Ta có:
$3{x_1} + 2{x_2} = 20 \Rightarrow {x_1} = 26;{x_2} = - 29$
Khi đó:
$\begin{array}{l}
{x_1}{x_2} = m\\
\Leftrightarrow 26.\left( { - 29} \right) = m\\
\Leftrightarrow m = - 754\left( {tm\left( * \right)} \right)
\end{array}$
Vậy $m=-754$