Đáp án:
b) \(\left[ \begin{array}{l}
m = 1\\
m = - 3
\end{array} \right. \to \left[ \begin{array}{l}
x = - 4\\
x = 0
\end{array} \right.\)
Giải thích các bước giải:
a) Để phương trình có 2 nghiệm lớn hơn -1
\(\begin{array}{l}
\to \left\{ \begin{array}{l}
{m^2} + 6m + 9 - 4m - 12 \ge 0\\
{x_1} > - 1\\
{x_2} > - 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
{m^2} + 2m - 3 \ge 0\\
\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left( {m + 3} \right)\left( {m - 1} \right) \ge 0\\
{x_1}{x_2} + {x_1} + {x_2} + 1 > 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m \ge 1\\
m \le - 3
\end{array} \right.\\
4m + 12 - 2m - 6 + 1 > 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m \ge 1\\
m \le - 3
\end{array} \right.\\
2m > - 7
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m \ge 1\\
m \le - 3
\end{array} \right.\\
m > - \dfrac{7}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
m \ge 1\\
- \dfrac{7}{2} < m \le - 3
\end{array} \right.
\end{array}\)
b) Để phương trình có nghiệm kép
\(\begin{array}{l}
\to {m^2} + 6m + 9 - 4m - 12 = 0\\
\to {m^2} + 2m - 3 = 0\\
\to \left( {m + 3} \right)\left( {m - 1} \right) = 0\\
\to \left[ \begin{array}{l}
m = 1\\
m = - 3
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 4\\
x = 0
\end{array} \right.
\end{array}\)