Đáp án:
\(\eqalign{
& a)\,\,x \in \left\{ {{{5\pi } \over {12}};{{17\pi } \over {12}};{{29\pi } \over {12}};{{7\pi } \over {12}};{{19\pi } \over {12}};{{31\pi } \over {12}}} \right\} \cr
& b)\,\,\,{{103\pi } \over {12}} \cr} \)
Giải thích các bước giải:
\(\eqalign{
& 2\cos 2x + \sqrt 3 = 0 \Leftrightarrow \cos 2x = - {{\sqrt 3 } \over 2} \cr
& \Leftrightarrow \left[ \matrix{
2x = {{5\pi } \over 6} + k2\pi \hfill \cr
2x = - {{5\pi } \over 6} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {{5\pi } \over {12}} + k\pi \hfill \cr
x = - {{5\pi } \over {12}} + k\pi \hfill \cr} \right.\,\,\left( {k \in Z} \right) \cr
& a)\,\,x \in \left[ {0;3\pi } \right] \cr
& + )\,\,0 \le {{5\pi } \over {12}} + k\pi \le 3\pi \cr
& \Leftrightarrow 0 \le {5 \over {12}} + k \le 3 \cr
& \Leftrightarrow - {5 \over {12}} \le k \le {{31} \over {12}} \cr
& Ma\,\,k \in Z \Rightarrow k \in \left\{ {0;1;2} \right\} \cr
& \Rightarrow x \in \left\{ {{{5\pi } \over {12}};{{17\pi } \over {12}};{{29\pi } \over {12}}} \right\} \cr
& + )\,\,0 \le - {{5\pi } \over {12}} + k\pi \le 3\pi \cr
& \Leftrightarrow 0 \le {{ - 5} \over {12}} + k \le 3 \cr
& \Leftrightarrow {5 \over {12}} \le k \le {{41} \over {12}} \cr
& Ma\,\,k \in Z \Rightarrow k \in \left\{ {1;2;3} \right\} \cr
& \Rightarrow x \in \left\{ {{{7\pi } \over {12}};{{19\pi } \over {12}};{{31\pi } \over {12}}} \right\} \cr
& b)\,\, + )\,\, - {\pi \over 2} \le {{5\pi } \over {12}} + k\pi \le 3\pi \cr
& \Leftrightarrow - {1 \over 2} \le {5 \over {12}} + k \le 3 \cr
& \Leftrightarrow - {{11} \over {12}} \le k \le {{31} \over {12}} \cr
& Ma\,\,k \in Z \Rightarrow k \in \left\{ {0;1;2} \right\} \cr
& \Rightarrow x \in \left\{ {{{5\pi } \over {12}};{{17\pi } \over {12}};{{29\pi } \over {12}}} \right\} \cr
& + )\,\, + )\,\, - {\pi \over 2} \le - {{5\pi } \over {12}} + k\pi \le 3\pi \cr
& \Leftrightarrow - {1 \over 2} \le {{ - 5} \over {12}} + k \le 3 \cr
& \Leftrightarrow - {1 \over {12}} \le k \le {{41} \over {12}} \cr
& Ma\,\,k \in Z \Rightarrow k \in \left\{ {0;1;2;3} \right\} \cr
& \Rightarrow x \in \left\{ {{{ - 5\pi } \over {12}};{{7\pi } \over {12}};{{19\pi } \over {12}};{{31\pi } \over {12}}} \right\} \cr
& \Rightarrow Tong\,\,cac\,\,nghiem\,\,la: \cr
& {{5\pi } \over {12}} + {{17\pi } \over {12}} + {{29\pi } \over {12}} + {{ - 5\pi } \over {12}} + {{7\pi } \over {12}} + {{19\pi } \over {12}} + {{31\pi } \over {12}} = {{103\pi } \over {12}} \cr} \)