$0<\alpha<\dfrac{\pi}{2}$
$\Rightarrow \cos\alpha>0$, $\sin\dfrac{\alpha}{2}>0,\cos\dfrac{\alpha}{2}>0$
$\Rightarrow \cos\alpha=\sqrt{1-\sin^2\alpha}=\dfrac{3}{5}$
$\sin^2\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{2}=\dfrac{1}{5}$
$\Rightarrow \sin\dfrac{\alpha}{2}=\dfrac{1}{\sqrt5}$
$\Rightarrow \cos\dfrac{\alpha}{2}=\dfrac{2}{\sqrt5}$
$\sin 2\alpha=2\sin\alpha.\cos\alpha=\dfrac{24}{25}$
$\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=\dfrac{-7}{25}$
Vậy ta có:
$\sin\dfrac{5\alpha}{2}=\sin(\dfrac{\alpha}{2}+2\alpha)$
$=\sin\dfrac{\alpha}{2}.\cos2\alpha+\cos\dfrac{\alpha}{2}\sin2\alpha$
$=\dfrac{41}{125}$