Cho số phức \(z\)và gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 8i = 0\) (\({z_1}\) có phần thực dương). Giá trị nhỏ nhất của biểu thức \(P = \left| {z - {z_1}} \right| + \left| {{z_2} - z} \right| + \left| {\overline z + 2{z_1} + \dfrac{{{z_2}}}{2}} \right|\) được viết dưới dạng \(m\sqrt n + p\sqrt {q\,} \)(trong đó \(n,p \in \mathbb{N};\;\;m,q\)là các số nguyên tố). Tổng \(m + n + p + q\) bằng
A.\(10.\)                                        
B.\(13.\)                                        
C.\(11.\)                                        
D.\(12.\)

Các câu hỏi liên quan